Canard Behavior in Rate Induced Tipping

Jonathan Hahn, November 1, 2016

General framework:

$$\frac{df}{dt} = f(x, \mu, \lambda(rt))$$

x is the state vector, μ is a vector of parameters, λ is a continuous function, *r* is the rate of the forcing

For all values of λ , there is a stable equilibrium $\tilde{x}(\lambda)$

General framework:

$$\frac{df}{dt} = f(x, \mu, \lambda(rt))$$

x is the state vector, μ is a vector of parameters, λ is a continuous function, *r* is the rate of the forcing

For all values of λ , there is a stable equilibrium $\tilde{x}(\lambda)$

For $r \in [0, r_c)$, λ changes slowly enough that if x(0) is within some neighborhood of $\tilde{x}(\lambda(0))$, then x(t) is within some other neighborhood of $\tilde{x}(\lambda(rt))$ for all t.

We call $\tilde{x}(\lambda(rt))$ the *quasi-stable equilibrium* (QSE).

We say the state tracks the QSE for $0 < r < r_c$.

For $r \in [0, r_c)$, λ changes slowly enough that if x(0) is within some neighborhood of $\tilde{x}(\lambda(0))$, then x(t) is within some other neighborhood of $\tilde{x}(\lambda(rt))$ for all t.

We call $\tilde{x}(\lambda(rt))$ the *quasi-stable equilibrium* (QSE).

We say the state tracks the QSE for $0 < r < r_c$.

For $r \in [0, r_c)$, λ changes slowly enough that if x(0) is within some neighborhood of $\tilde{x}(\lambda(0))$, then x(t) is within some other neighborhood of $\tilde{x}(\lambda(rt))$ for all t.

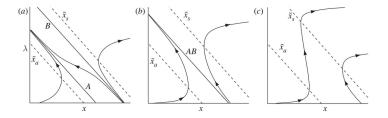
We call $\tilde{x}(\lambda(rt))$ the quasi-stable equilibrium (QSE).

We say the state tracks the QSE for $0 < r < r_c$.

For $r > r_c$, x(t) no longer stays within the required neighborhood of the QSE. The system "tips" and we say it has *rate-dependent tipping*.

The neighborhood of the QSE that describes the tipping point can be chosen in many ways: by a given distance *R*, by the state leaving a basin of attraction of the QSE, by something else topological in the system, or by some other arbitrary choice.

$$\frac{dx}{dt} = (x + \lambda)^2 - \mu$$
$$\frac{d\lambda}{dt} = r$$



Rate-induced tipping example

$$\frac{dx}{dt} = (x+\lambda)^2 - \mu$$
$$\frac{d\lambda}{dt} = r$$

Co-moving system: set $w = x + \lambda$.

$$\frac{dw}{dt} = w^2 - \mu + r$$

Equilibrium at $w = \pm \sqrt{\mu - r}$ if $r < \mu$.

Tipping condition: $r > r_c$ where

$$r_c = \begin{cases} \mu - (\lambda_0 + x_0)^2 & \text{if } - x_0 < \lambda_0 < -x_0 + \sqrt{\mu} \\ \mu & \text{if } \lambda_0 \le -x_0 \end{cases}$$

FAST-SLOW SYSTEM

QSE near a locally folded critical manifold.

$$\epsilon \frac{dx}{dt} = y + \lambda + x(x - 1)$$
$$\frac{dy}{dt} = -\sum_{n=1}^{N} x^{n}$$

 $N \ge 5$, odd. (0, $-\lambda$) is globally asymptotically stable.

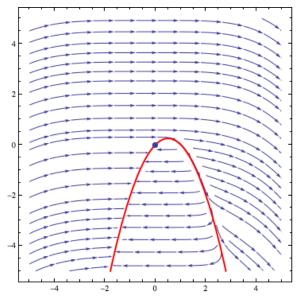
FAST-SLOW SYSTEM

$$\epsilon \frac{dx}{dt} = y + \lambda + x(x - 1)$$
$$\frac{dy}{dt} = -\sum_{n=1}^{N} x^{n}$$

Set $\epsilon = 0$ to find the slow manifold: $0 = y + \lambda + x(x - 1)$

$$S(\lambda) = \{(x, y) \in \mathbb{R}^2 : y = -\lambda - x(x - 1)\}$$

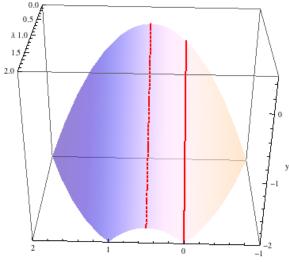
FAST-SLOW SYSTEM



FAST SLOW SYSTEM: RATE TIPPING

$$\epsilon \frac{dx}{dt} = y + \lambda + x(x - 1)$$
$$\frac{dy}{dt} = -\sum_{n=1}^{N} x^{n}$$
$$\frac{d\lambda}{dt} = r$$

Critical Manifold



Projected Reduced System

Set $\epsilon = 0$ and differentiate the resulting equation with respect to *t* to find a system approximating the slow dynamics.

$$0 = \frac{dy}{dt} + \frac{d\lambda}{dt} + (2x - 1)\frac{dx}{dt}$$
$$\frac{dx}{dt} = \left(\sum_{n=1}^{N} x^n - r\right)(2x - 1)^{-1}$$
$$\frac{d\lambda}{dt} = r$$

Desingularized system

Rescale time: $\frac{dt}{d\tau} = -(2x - 1)$

$$\frac{dx}{d\tau} = \left(r - \sum_{n=1}^{N} x^n\right)$$
$$\frac{d\lambda}{d\tau} = -r(2x - 1)$$

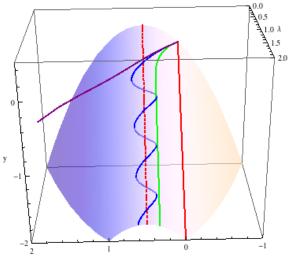
This reverses the direction of time on the repelling part of the critical manifold.

For $0 < r < \sum_{n=1}^{N} (1/2)^n$, all trajectories within the attracting part of the critical manifold converge to x^* where $r = \sum_{n=1}^{N} x^*$.

Critical rate

$$r_c = \sum_{n=1}^N (1/2)^n$$

Solutions



CO-MOVING SYSTEM

$$\epsilon \frac{dx}{dt} = y + \lambda + x(x - 1)$$
$$\frac{dy}{dt} = -\sum_{n=1}^{N} x^{n}$$
$$\frac{d\lambda}{dt} = r$$

Create a co-moving system: $w = y + \lambda$

$$\epsilon \frac{dx}{dt} = w + x(x-1)$$
$$\frac{dw}{dt} = r - \sum_{n=1}^{N} x^{n}$$

CO-MOVING SYSTEM

$$\epsilon \frac{dx}{dt} = w + x(x - 1)$$
$$\frac{dw}{dt} = r - \sum_{n=1}^{N} x^{n}$$

The equilibrium (x^*, w^*) in the co-moving system is given by the solution to

$$\sum_{n=1}^{N} (x^*)^n = r$$
$$w^* = -(x^*)^2 + x^*$$

Hopf bifurcation analysis

The Jacobian at this equilibrium is:

$$\begin{bmatrix} (2x_1^* - 1)/\epsilon & 1/\epsilon \\ \sum_{n=1}^N -n(x_1^*)^{n-1} & 0 \end{bmatrix}$$

and the eigenvalues of the Jacobian are

$$\frac{2x_1^* - 1 \pm \sqrt{(1 - 2x_1^*)^2 - 4\epsilon \sum_{n=1}^N n(x_1^*)^{n-1}}}{2\epsilon}$$

.

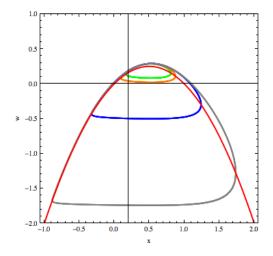
Hopf bifurcation analysis

Eigenvalues:

$$\frac{2x_1^* - 1 \pm \sqrt{(1 - 2x_1^*)^2 - 4\epsilon \sum_{n=1}^N n(x_1^*)^{n-1}}}{2\epsilon}.$$

When $x^* < 1/2$, the equilibrium is stable, which is in agreement with the previous conclusion that the system does not tip for $r < \sum_{n=1}^{N} (1/2)^n = r_c$. As *r* increases, so does x^* , so when $r = r_c$, and $x^* = 1/2$ the pair of eigenvalues cross the imaginary axis, and a Hopf bifurcation occurs.

Periodic orbits in co-moving system



Periodic orbit expands rapidly as in a canard explosion.

VAN DER POL OSCILLATOR

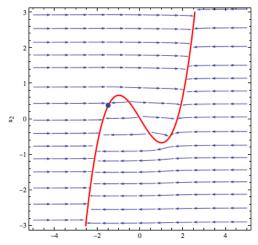
$$\epsilon \frac{dx}{dt} = x_2 + (x_1 - \frac{x_1^3}{3})$$
$$\frac{dx_2}{dt} = -x_1 - \alpha$$

VAN DER POL OSCILLATOR

$$\epsilon \frac{dx}{dt} = x_2 + (x_1 - \frac{x_1^3}{3}) + \lambda$$
$$\frac{dx_2}{dt} = -x_1 - \alpha$$
$$\frac{d\lambda}{dt} = r > 0$$

 $\alpha>1$ is fixed, and a stable equilibrium exists at $(-\alpha,-\alpha+\frac{\alpha^3}{3}-\lambda)$

Phase portrait for $\lambda = 0$.



x1

Co-moving van der Pol System

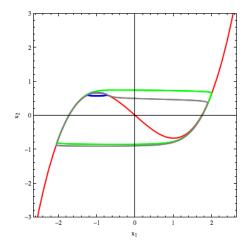
Set $w = x_2 + \lambda$:

$$\epsilon \frac{dx_1}{dt} = w + (x_1 - \frac{x_1^3}{3})$$
$$\frac{dw}{dt} = -x_1 - \alpha + r$$

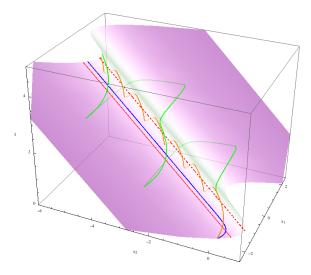
This is the classic van der Pol system!

CANARD PROGRESSION

As *r* increases beyond $\alpha - 1$, there is a canard explosion.



Orbits in original system



Does spiraling behavior still count as "tracking"?

If so, is the critical rate for spiraling really a "tipping point"?

How do we prove this sprialing occurs when we can't reduce to a "co-moving system"?