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Rate Induced Tipping

General framework:

df
dt

= f (x, µ, λ(rt))

x is the state vector, µ is a vector of parameters, λ is a
continuous function, r is the rate of the forcing

For all values of λ, there is a stable equilibrium x̃(λ)
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Rate Induced Tipping

For r ∈ [0, rc), λ changes slowly enough that if x(0) is within
some neighborhood of x̃(λ(0)), then x(t) is within some other
neighborhood of x̃(λ(rt)) for all t.

We call x̃(λ(rt)) the quasi-stable equilibrium (QSE).

We say the state tracks the QSE for 0 < r < rc.
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Rate Induced Tipping

For r > rc, x(t) no longer stays within the required
neighborhood of the QSE. The system “tips” and we say it has
rate-dependent tipping.

The neighborhood of the QSE that describes the tipping point
can be chosen in many ways: by a given distance R, by the state
leaving a basin of attraction of the QSE, by something else
topological in the system, or by some other arbitrary choice.
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Rate-induced tipping example

dx
dt

= (x + λ)2 − µ

dλ
dt

= r
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Rate-induced tipping example

dx
dt

= (x + λ)2 − µ

dλ
dt

= r

Co-moving system: set w = x + λ.

dw
dt

= w2 − µ+ r

Equilibrium at w = ±
√
µ− r if r < µ.

Tipping condition: r > rc where

rc =

{
µ− (λ0 + x0)

2 if − x0 < λ0 < −x0 +
√
µ

µ ifλ0 ≤ −x0
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Fast-Slow System

QSE near a locally folded critical manifold.

ε
dx
dt

= y + λ+ x(x − 1)

dy
dt

= −
N∑

n=1
xn

N ≥ 5, odd.
(0,−λ) is globally asymptotically stable.
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Fast-Slow System

ε
dx
dt

= y + λ+ x(x − 1)

dy
dt

= −
N∑

n=1
xn

Set ε = 0 to find the slow manifold: 0 = y + λ+ x(x − 1)

S(λ) = {(x, y) ∈ R2 : y = −λ− x(x − 1)}
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Fast-Slow System
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Fast Slow System: Rate Tipping

ε
dx
dt

= y + λ+ x(x − 1)

dy
dt

= −
N∑

n=1
xn

dλ
dt

= r
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Critical Manifold
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Projected Reduced System

Set ε = 0 and differentiate the resulting equation with respect to
t to find a system approximating the slow dynamics.

0 =
dy
dt

+
dλ
dt

+ (2x − 1)dx
dt

dx
dt

=
( N∑

n=1
xn − r

)
(2x − 1)−1

dλ
dt

= r
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Desingularized system

Rescale time: dt
dτ = −(2x − 1)

dx
dτ

=
(

r −
N∑

n=1
xn
)

dλ
dτ

= −r(2x − 1)

This reverses the direction of time on the repelling part of the
critical manifold.
For 0 < r <

∑N
n=1(1/2)n, all trajectories within the attracting

part of the critical manifold converge to x∗ where r =
∑N

n=1 x∗.
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Critical rate

rc =
N∑

n=1
(1/2)n
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Solutions
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Co-moving system

ε
dx
dt

= y + λ+ x(x − 1)

dy
dt

= −
N∑

n=1
xn

dλ
dt

= r

Create a co-moving system: w = y + λ

ε
dx
dt

= w + x(x − 1)

dw
dt

= r −
N∑

n=1
xn
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Co-moving system

ε
dx
dt

= w + x(x − 1)

dw
dt

= r −
N∑

n=1
xn

The equilibrium (x∗,w∗) in the co-moving system is given by
the solution to

N∑
n=1

(x∗)n = r

w∗ = −(x∗)2 + x∗
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Hopf bifurcation analysis

The Jacobian at this equilibrium is: (2x∗1 − 1)/ε 1/ε
N∑

n=1
−n(x∗1)

n−1 0


and the eigenvalues of the Jacobian are

2x∗1 − 1±
√

(1− 2x∗1)2 − 4ε
∑N

n=1 n(x∗1)
n−1

2ε
.
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Hopf bifurcation analysis

Eigenvalues:

2x∗1 − 1±
√

(1− 2x∗1)2 − 4ε
∑N

n=1 n(x∗1)
n−1

2ε
.

When x∗ < 1/2, the equilibrium is stable, which is in agreement
with the previous conclusion that the system does not tip for
r <

∑N
n=1(1/2)n = rc. As r increases, so does x∗, so when r = rc,

and x∗ = 1/2 the pair of eigenvalues cross the imaginary axis,
and a Hopf bifurcation occurs.
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Periodic orbits in co-moving system

Periodic orbit expands rapidly as in a canard explosion.
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Van der Pol Oscillator

ε
dx
dt

= x2 + (x1 −
x3

1
3
)

dx2
dt

= −x1 − α
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Van der Pol Oscillator

ε
dx
dt

= x2 + (x1 −
x3

1
3
) + λ

dx2
dt

= −x1 − α

dλ
dt

= r > 0

α > 1 is fixed, and a stable equilibrium exists at
(−α,−α+ α3

3 − λ)
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Phase portrait for λ = 0.

23/27



Co-moving van der Pol System

Set w = x2 + λ:

ε
dx1
dt

= w + (x1 −
x3

1
3
)

dw
dt

= −x1 − α+ r

This is the classic van der Pol system!
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Canard Progression
As r increases beyond α− 1, there is a canard explosion.
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Orbits in original system
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Questions

Does spiraling behavior still count as “tracking”?

If so, is the critical rate for spiraling really a “tipping point”?

How do we prove this sprialing occurs when we can’t reduce to
a “co-moving system”?
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